Physics 23 Chapter 14
 Ideal Gases

Dr. Joseph F. Alward

| Avogadro's Number: $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23}$ |
| :--- | :--- |
| 6.02×10^{23} atoms of any atomic substance (such |
| as carbon, silicon, copper, silver, gold) is called |
| a "mole." |
| Likewise, 6.02×10^{23} molecules of a molecular |
| substance, such as carbon dioxide, CO_{2}, |
| methane, CH_{4}, and water, $\mathrm{H}_{2} \mathrm{O}$ is called a |
| "mole." |

The answers above would apply to any element.

Atomic Masses of Elemental Substances

The chart above is not a complete listing of the elements. Useful rule: elements lying in the same column have similar electrical and chemical properties. Column 11, for example: copper, silver, gold.

Moles and Atomic Mass

> One mole of an element -in addition to being Avogadro's Number of atoms of an elemental substance, is also a certain number of grams of the element. That particular number is described below:

The decimal numbers inside the element boxes above are the "atomic masses" of the element, measured in grams. That number-the atomic mass-represents the number of grams of that element that contain 6.02×10^{23} atoms, i.e., one mole of that element. For example, 15.999 grams of oxygen (O) equal one mole of oxygen.

The atomic mass is symbolized as A. "Atomic mass" is sometimes called, "Atomic Weight."

Example A:

What is the mass of an atom of uranium? $\mathrm{A}=238.029$ grams.

$$
\frac{238.029 \mathrm{~g} / \text { mole }}{6.02 \times 10^{23} \text { atoms/mole }}=3.95 \times 10^{-22} \mathrm{~g} / \text { atom }
$$

Example B:

How many atoms are there in 100 grams of copper? ($\mathrm{A}=$ 63.55)
$\mathrm{n}=100 \mathrm{~g} / 63.55 \mathrm{~g} / \mathrm{mole}$
$=1.57$ moles
$1.57\left(6.02 \times 10^{23}\right)=9.45 \times 10^{23}$ atoms

The Ideal Gas Law

In this section we will discuss "ideal" monatomic gases, which are hypothetical gases consisting of atoms which neither collide nor bond with each other. Ideal gases don't exist, but many gases behave as if they were nearly ideal.

In this section, the ideal monatomic gases we will study are typically inside a cylinder with piston (lid), usually "weightless" that is often movable, but sometimes not. Such a cylinder is shown at the right.

The significance of a piston being movable is found in the fact that the piston will rise or fall until the pressure inside matches the
 external pressure, which is often just atmospheric pressure.

Properties that are relevant to our study of ideal gases in a container are pressure (P), volume (V), the number of atoms (N), the number of moles (n) and the Kelvin temperature (T).

Note: No piston is truly weightless. For our purposes, the word "weightless" means that the piston's weight is ignorably small compared to other forces in the system.

Other note: Some gas containers have a vent that allows gas to enter or leave. In unvented containers the number of moles doesn't change.

Ideal Gas Pressure, Temperature and Volume

Relevant Constants, Symbols, Equations
Avogadro's Number:
$\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23}$
Boltzmann's Constant: $\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K}$
Gas Constant: $\begin{aligned} \mathrm{R} & =\mathrm{N}_{\mathrm{A}} \mathrm{k} \\ & =\left(6.02 \times 10^{23}\right)\left(1.38 \times 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K}\right) \\ & =8.31 \mathrm{~J} /{ }^{\circ} \mathrm{K} \end{aligned}$
$\begin{aligned} & \mathrm{P}=\text { Absolute pressure (in Pa) } \\ & \mathrm{V}=\text { Volume }\left(\text { in } \mathrm{m}^{3}\right. \text {) } \\ & \mathrm{N}=\text { Number of atoms (unitless) } \\ & \mathrm{n}=\text { Number of moles (unitless) } \\ & \mathrm{T}=\text { Kelvin temperature } \quad\left(\text { in }{ }^{\circ} \mathrm{K}\right) \end{aligned}$
$\text { Note: } \quad \begin{aligned} \mathrm{Nk} & =\left(\mathrm{nN}_{\mathrm{A}}\right) \mathrm{k} \\ & =\mathrm{n}\left(\mathrm{~N}_{\mathrm{A}} \mathrm{k}\right) \\ & =\mathrm{nR} \end{aligned}$
Without proof, we state below two forms of the Ideal Gas Law
$\mathrm{PV}=\mathrm{NkT}$ (The N -Form)
$\mathrm{PV}=\mathrm{nRT}$ (The n -Form)
Related Units: $\begin{aligned} \mathrm{J} / \mathrm{m}^{3} & =(\mathrm{N}-\mathrm{m}) / \mathrm{m}^{3}=\mathrm{N} / \mathrm{m}^{2} \\ & = \end{aligned}$

Example A:

A container having a fixed volume of $0.04 \mathrm{~m}^{3}$ is filled with 80 grams of argon $(\mathrm{A}=39.95)$ gas at a temperature of $315^{\circ} \mathrm{K}$.

What is the gas pressure?
Solution:

$$
\begin{aligned}
\mathrm{n} & =(80 \mathrm{~g}) /(39.95 \mathrm{~g} / \mathrm{mole}) \\
& =2.00 \text { moles }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{PV} & =\mathrm{nRT} \\
\mathrm{P} & =\mathrm{nRT} / \mathrm{V} \\
& =(2.00)\left(8.31 \mathrm{~J} /{ }^{\circ} \mathrm{K}\right)\left(315^{\circ} \mathrm{K}\right) /\left(0.04 \mathrm{~m}^{3}\right) \\
& =130,882 \mathrm{~J} / \mathrm{m}^{3} \\
& =130,882 \mathrm{~Pa}
\end{aligned}
$$

Example B:

On top of a weightless, movable piston inside a cylinder is placed a $600-\mathrm{N}$ object. Inside the cylinder is 10 moles of an ideal gas. The temperature of the gas is $500^{\circ} \mathrm{K}$, and the area of the piston is $0.06 \mathrm{~m}^{2}$.

What is the volume of the gas?
The piston is movable, so the piston moves until the
 pressure forces are balanced, which occurs when the internal pressure is the same as the external pressure, which often is just atmospheric pressure, $\mathrm{P}_{\mathrm{o}}=101,000 \mathrm{~Pa}$. In this case, however, the external pressure is the sum of atmospheric pressure at sea-level $(101,000 \mathrm{~Pa})$, plus the added pressure due to the $600-\mathrm{N}$ force acting on the cylinder top's $0.06 \mathrm{~m}^{2}$ area:
$\mathrm{P}=\mathrm{P}_{\mathrm{o}}+\mathrm{F} / \mathrm{A}$
$=101,000+600 / 0.06$
$=111,000 \mathrm{~Pa}$
Using the ideal gas law, we have
$\mathrm{V}=\mathrm{nRT} / \mathrm{P}$
$=(10)(8.31)(500) / 111,000$
$=0.37 \mathrm{~m}^{3}$

The Ratios Equations

(The n-form)
$\mathrm{P}_{2} \mathrm{~V}_{2}=\mathrm{n}_{2} \mathrm{RT}_{2}$
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{n}_{1} \mathrm{RT}_{1}$
Divide to obtain "The Ratios Equation"
$\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)\left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)=\left(\mathrm{n}_{2} / \mathrm{n}_{1}\right)\left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)$

The table below lists a few of the "thermodynamic" processes we will encounter in this chapter. Not shown are the constant mass processes in which gas neither enters nor leaves the container, i.e., $\mathrm{n}_{1}=\mathrm{n}_{2}$. The names by which chemists refer to these processes are included on the table. Student's need not memorize these names.

Isobaric Process	Constant Pressure	$\mathrm{P}_{2}=\mathrm{P}_{1}$	$\left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)=\left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)$ "Charles' Law"
Isochoric Process	Constant Volume	$\mathrm{V}_{2}=\mathrm{V}_{1}$	$\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)=\left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)$ "Gay-Lusaac Law"
Isothermal Process	Constant Temperature	$\mathrm{T}_{2}=\mathrm{T}_{1}$	$\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)=\left(\mathrm{V}_{1} / \mathrm{V}_{2}\right)$ "Boyle's Law"

Unless otherwise specified, students should assume that the process is one of constant mass, i.e., the container is unvented-no gas can enter or leave the container.

Example A:

A cylinder containing gas at a temperature $\mathrm{T}_{1}=300^{\circ} \mathrm{K}$ is topped by a movable piston. As the temperature of the gas is changed, the volume is reduced by 20%. What is the new temperature of the gas?
$\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)\left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)=\mathrm{T}_{2} / \mathrm{T}_{1}$
The piston is movable, so the pressures before and after equal the external pressure, so the ratio of the pressures is 1 :
$(0.80)=\left(\mathrm{T}_{2} / 300\right)$
$\mathrm{T}_{2}=240^{\circ} \mathrm{K}$

Example B:

Forty moles of an ideal gas in a vented cylinder with a movable piston is held at a constant temperature by placing the cylinder in a large container of liquid at a temperature that is not allowed to change.
(a) How many moles of gas will remain if the volume is reduced from $8.0 \mathrm{~m}^{3}$ to $2.0 \mathrm{~m}^{3}$?
$\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)\left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)=\left(\mathrm{n}_{2} / \mathrm{n}_{1}\right)\left(\mathrm{T}_{2} / \mathrm{T}_{1}\right) \quad$ (Equation 1)
The piston is movable, so the ratio of the pressures is 1 , and the temperature is constant so the ratio of the temperatures is also 1 :

$$
\begin{aligned}
\mathrm{V}_{2} / \mathrm{V}_{1} & =\left(\mathrm{n}_{2} / \mathrm{n}_{1}\right) \\
2 / 8 & =\mathrm{n}_{2} / 40 \\
\mathrm{n}_{2} & =10 \text { moles }
\end{aligned}
$$

(b) How many moles left the container?

There initially were 40 moles, but now there are only 10 :

$$
40-10=30
$$

Thirty moles left the container.

Example A:

An unvented cylinder of gas with an immovable piston contains air at $450^{\circ} \mathrm{K}$ and a pressure of 300 kPa . The temperature is then increased to $900^{\circ} \mathrm{K}$.

What is the new pressure?
Solution:

Recall the ideal gas law applied to an unvented cylinder:
$\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)\left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)=\left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)$
The lid cannot move, so the volume is constant:
$\mathrm{P}_{2} / \mathrm{P}_{1}=\mathrm{T}_{2} / \mathrm{T}_{1}$
$\mathrm{P}_{2} / 300=900 / 450$
$\mathrm{P}_{2}=600 \mathrm{kPa}$

Example B:

In a constant-temperature ideal gas process of an ideal the volume is reduced to onethird of its previous value. What happens to the pressure?

Solution:
$\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)(1 / 3)=1$
$\mathrm{P}_{2} / \mathrm{P}_{1}=3$
The pressure is tripled.

Kinetic Energy of an Ideal Monatomic Gas

Without proof, we state here that the average kinetic energy per atom in an ideal monatomic gas is given below:

$$
\mathrm{K}=(3 / 2) \mathrm{kT}
$$

Example:

What is the average speed of the atoms in a gas of argon at $500^{\circ} \mathrm{K}$?

First, calculate the mass of an argon atom:

$$
\begin{aligned}
& 39.95 / 6.02 \times 10^{23}=6.64 \times 10^{-23} \mathrm{~g} \\
& \mathrm{~m}=6.64 \times 10^{-26} \mathrm{~kg} \\
& 1 / 2 \mathrm{mv}^{2}=(3 / 2) \mathrm{kT} \\
& 1 / 2\left(6.64 \times 10^{-26}\right) v^{2}=(3 / 2)\left(1.38 \times 10^{-23}\right) 500 \\
& \mathrm{v}=558 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Internal Energy of an Ideal Monatomic Gas

Three Different Equations

The "internal energy" (i.e., thermal energy, heat energy) of N atoms of an ideal monatomic gas is N times the average kinetic energy per atom:

For one atom:
$\mathrm{K}=(3 / 2) \mathrm{kT}$

For N atoms:
E $=(\mathbf{3} / 2)$ NkT

Earlier, we showed that $\mathrm{Nk}=\mathrm{nR}$
E $=(\mathbf{3} / \mathbf{2}) \mathbf{n R T}$
From the Ideal Gas Law, $\mathrm{nRT}=\mathrm{PV}$:
E $=(\mathbf{3} / 2) \mathrm{PV}$

Note: No matter how the total energy of an ideal gas is calculated, it does not depend on which element comprises the gas; it could be, for example, argon, neon, hydrogen, or helium.

Example A:

What is the internal energy of $0.001 \mathrm{~m}^{3}$ of an ideal gas at pressure $10 \mathrm{P}_{0}$?

$$
\begin{aligned}
\mathrm{E} & =(3 / 2) \mathrm{PV} \\
& =(3 / 2)(10)\left(1.01 \times 10^{5}\right)(0.001) \\
& =1515 \mathrm{~J}
\end{aligned}
$$

Example B:

What is the internal energy of six moles of an ideal monatomic gas at $400^{\circ} \mathrm{K}$?

$$
\begin{aligned}
\mathrm{E} & =(3 / 2) \mathrm{nRT} \\
& =(3 / 2)(6)(8.31)(400) \\
& =2.99 \times 10^{4} \mathrm{~J}
\end{aligned}
$$

