Physics 23 Chapter 10
Oscillatory Motion
Dr. Joseph F. Alward

An object is oscillating along the x -axis at the end of a spring. As the system oscillates, the x coordinate of the object varies between the two extremes $x=+A$, and $x=-A$. These are the "turn-around" points, the places where the object is momentarily at rest.

The graph below represents the oscillatory motion above.

T = "Period" of the motion. It's the time it takes to complete one cycle of motion.
$\mathrm{f}=1 / \mathrm{T}$
$=$ Number of cycles per second
$=$ Frequency of oscillation

The graph on the previous page is repeated below:

The graph above corresponds to the equation below:

$$
x=A \cos [(2 \pi / T) t]
$$

To simplify the equation of motion, we define a quantity called "angular frequency":

$$
\begin{array}{ll}
\omega=2 \pi / \mathrm{T} & \text { or } \\
\omega=2 \pi \mathrm{f} &
\end{array}
$$

The units of angular frequency are rad/s.*

$$
x=A \cos (\omega t)
$$

The units of the argument ($\omega \mathrm{t})$ of the cosine function are "radians."

$$
\text { Without proof: } \omega=(\mathrm{k} / \mathrm{m})^{1 / 2}
$$

*Note that the units of angular frequency ($\mathrm{rad} / \mathrm{s}$) are the same as the units of angular velocity, a quantity discussed in the chapter dealing with rotational motion, and the symbols for these two quantities are also the same. Nevertheless, these quantities are not related.

$$
\begin{aligned}
& \text { Example: } \\
& \mathrm{k}=600 \mathrm{~N} / \mathrm{m} \\
& \mathrm{~m}=1.50 \mathrm{~kg} \\
& \mathrm{~A}=0.40 \mathrm{~m}
\end{aligned}
$$

(a) What is the equation of motion?
$\omega=(\mathrm{k} / \mathrm{m})^{1 / 2}$
$=(600 / 1.5)^{1 / 2}$
$=20 \mathrm{rad} / \mathrm{s} \quad\left(\mathrm{or}, 20 \mathrm{~s}^{-1}\right)$
$\mathrm{x}=\mathrm{A} \cos (\omega \mathrm{t})$
$x=0.40 \cos (20 t)$
(b) What is the period of motion?
$\omega=2 \pi / \mathrm{T}$
$20 \mathrm{~s}^{-1}=2 \pi / \mathrm{T}$
$\mathrm{T}=0.31 \mathrm{~s}$
(c) What is the frequency of oscillation?
$\mathrm{f}=1 / \mathrm{T}$
$=1 / 0.31 \mathrm{~s}$
$=3.23 \mathrm{~s}^{-1}$
$=3.23 \mathrm{~Hz}$

Example:

The object in the figure below is pulled 0.60 m to the right and released at time $t=0 \mathrm{~s}$.

$$
\begin{aligned}
& \mathrm{x}=0 \quad \mathrm{x}=0.60 \mathrm{~m} \\
& \text { OOOOOOOOODODOOOOOOODOO: }
\end{aligned}
$$

What will be the object's x -coordinate when $\mathrm{t}=0.64 \mathrm{~s}$?

```
x}=\textrm{A}\operatorname{cos}(\omega\textrm{t}
    = 0.60 cos [12.0 (0.64)]
    =0.10 m
```


Example:

A spring-mass system is oscillating on a frictionless tabletop. The spring constant is $500 \mathrm{~N} / \mathrm{m}$, and the object's mass is 3.47 kg . The object is pulled 0.80 m to the right and released at time $\mathrm{t}=0$.
(a) What is the system's initial total energy?

$$
\begin{aligned}
\mathrm{E}_{\mathrm{o}} & =\mathrm{K}_{\mathrm{o}}+\mathrm{U}_{\mathrm{o}} \\
& =0+1 / 2(500)(0.80)^{2} \\
& =160 \mathrm{~J}
\end{aligned}
$$

(b) At what x -coordinate will $\mathrm{K}=(2 / 3) \mathrm{U}$?

$$
\begin{aligned}
160 \mathrm{~J} & =2 / 3 \mathrm{U}+\mathrm{U} \\
& =5 / 3 \mathrm{U} \\
& =5 / 3\left(1 / 2 \mathrm{kx}^{2}\right) \\
& =5 / 3\left[1 / 2(500 \mathrm{~N} / \mathrm{m}) \mathrm{x}^{2}\right] \\
\mathrm{x} & =0.62 \mathrm{~m}
\end{aligned}
$$

(c) What is the earliest time (in milli-seconds) when $\mathrm{x}=0.62 \mathrm{~m}$?

$$
\begin{aligned}
& \omega=(500 \mathrm{~N} / \mathrm{m} / 3.47 \mathrm{~kg})^{1 / 2} \\
& =12 \mathrm{~s}^{-1} \quad(\mathrm{or} ` 12 \mathrm{rad} / \mathrm{s}) \\
& \mathrm{x}=\mathrm{A} \cos (\omega \mathrm{t}) \\
& 0.62=0.80 \cos (12 \mathrm{t}) \\
& \\
& \mathrm{t}=0.057 \mathrm{~s} \\
& =57 \mathrm{~ms}
\end{aligned}
$$

Example:

The motion of a spring-mass system begins when the

Obtain an expression for the maximum positive and negative velocities of the object.

Solution:

$$
\begin{aligned}
\mathrm{K}+\mathrm{U} & =\mathrm{K}_{\mathrm{o}}+\mathrm{U}_{\mathrm{o}} \\
1 / 2 \mathrm{mv}^{2}+1 / 2 \mathrm{kx}^{2} & =1 / 2 \mathrm{mv}_{\mathrm{o}}^{2}+1 / 2 \mathrm{kx}_{0}^{2} \\
& =0+1 / 2 \mathrm{kA}^{2} \\
1 / 2 \mathrm{mv}^{2} & =1 / 2 \mathrm{kA}^{2}-1 / 2 \mathrm{kx}^{2}
\end{aligned}
$$

Maximum positive and negative velocities occur when the right side of the equation above is maximum, which occurs when $x=0$:

$$
\begin{aligned}
1 / 2 & \mathrm{mv}^{2}=1 / 2 \mathrm{kA}^{2} \\
\mathrm{v} & = \pm(\mathrm{k} / \mathrm{m})^{1 / 2} \mathrm{~A} \\
& = \pm \omega \mathrm{A}
\end{aligned}
$$

The largest positive velocities occur when the object is moving to the right through $x=0$, such as at points 2 and 4 . Maximum negative velocities occur at points 1,3 , and 5 , when the object is moving to the left.

Example:

The spring constant of a spring resting on a tabletop is $1200 \mathrm{~N} / \mathrm{m}$. The left end is attached to a wall, and the right end is attached to an object whose mass is 20 kg .

The object is pulled 0.60 m to the right and released at time $\mathrm{t}=0$.
(a) What are the angular frequency ω, amplitude A , equation of motion, and total energy of the resulting oscillation?

$$
\begin{aligned}
\omega & =(\mathrm{k} / \mathrm{m})^{1 / 2} \\
& =(1200 / 20)^{1 / 2} \\
& =7.75 \mathrm{rad} / \mathrm{s} \\
\mathrm{~A} & =0.60 \mathrm{~m} \\
\mathrm{x} & =0.60 \cos (7.75 \mathrm{t}) \\
\mathrm{E}_{\mathrm{O}} & =1 / 2 \mathrm{kA}^{2} \\
& =1 / 2(1200)\left(0.60^{2}\right) \\
& =216 \mathrm{~J}
\end{aligned}
$$

(b) What is the first time at which the spring is compressed by 0.20 m ? (MODE: RADIAN)

$$
\begin{aligned}
\mathrm{x} & =\mathrm{A} \cos (\omega \mathrm{t}) \\
-0.20 & =0.60 \cos (7.75 \mathrm{t}) \\
\mathrm{t} & =0.25 \mathrm{~s}
\end{aligned}
$$

(c) What is the object's speed at that moment?

$$
\begin{gathered}
1 / 2(20) \mathrm{v}^{2}+1 / 2(1200)\left(0.20^{2}\right)=216 \\
\mathrm{v}= \pm 4.38 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

$$
\text { speed }=4.38 \mathrm{~m} / \mathrm{s}
$$

Summary of Important Equations

All of the example problems in this chapter can be solved using only the basic ideas found in the equations below:

$$
\begin{aligned}
& \mathrm{x}=\mathrm{A} \cos (\omega \mathrm{t}) \\
& \omega=(\mathrm{k} / \mathrm{m})^{1 / 2} \\
& \omega=2 \pi / \mathrm{T} \\
& \mathrm{~K}=1 / 2 \mathrm{mv}^{2} \\
& \mathrm{U}=1 / 2 \mathrm{kx}^{2} \\
& \mathrm{E}=\mathrm{K}+\mathrm{U} \\
& \mathrm{E}=\mathrm{E}_{0}
\end{aligned}
$$

